Abstract

The current research work was keen to examine the corrosion inhibition efficiency of mild steel (MS) in presence of aqueous extract of Araucaria heterophylla Gum (AHG) in 1 M H2SO4 medium. The phytoconstituents of the AHG were interpreted by GC-MS and corrosion inhibition efficiency was deduced using other techniques like weight loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS). Adsorption of inhibitor molecules on the mild steel surface was supported by Density Functional Theory (DFT) studies, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). It is seen from the results that the inhibitor exhibits optimum efficiency of 78.57% at 0.05% v/v on mild steel specimen in 1 M H2SO4 medium at room temperature. Tafel polarizations clearly show that the aqueous extract of AHG acts as a mixed type inhibitor. The change in the EIS parameters in presence of inhibitor is investigative of the protective layer formation of the mild steel surface. The adsorption is found to obey Langmuir adsorption isotherm. Thermodynamic and activation parameters for the corrosion inhibition process supported the physical adsorption mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.