Abstract
The deep subseafloor, extending from a few centimeters below the sediment surface to several hundred meters into sedimentary deposits, constitutes the deep biosphere and harbors an unexpected microbial diversity. Several studies have described the occurrence, turnover, activity and function of subseafloor prokaryotes; however, subsurface eukaryotic communities still remain largely underexplored. Ribosomal RNA surveys of superficial and near-surface marine sediments have revealed an unexpected diversity of active eukaryotic communities, but knowledge of the diversity of deep subseafloor microeukaryotes is still scarce. Here, we investigated the vertical distribution of DNA and RNA fungal signatures within subseafloor sediments of the Canterbury basin (New Zealand) by 454 pyrotag sequencing of fungal genetic markers. Different shifts between the fungal classes of Tremellomycetes, Sordariomycetes, Eurotiomycetes, Saccharomycetes, Wallemiomycetes, Dothideomycetes, Exobasidiomycetes and Microbotryomycetes were observed. These data provide direct evidence that fungal communities occur at record depths in deep sediments of the Canterbury basin and extend the depth limit of fungal presence and activity, respectively 1740 and 346mbsf. As most of the fungal sequences retrieved have a cosmopolitan distribution, it indicates that fungi are able to adapt to the deep subseafloor conditions at record-depth and must play important ecological roles in biogeochemical cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.