Abstract

Glucose deprivation of chick embryo fibroblasts results in a cycloheximide-sensitive stimulation of hexose transport and an increase in the levels of glucose-regulated polypeptides of molecular weights 75 000 and 95 000. The relationship between these two phenomena is evaluated in this study. The glucose deprivation-induced stimulation of hexose transport was observed to occur in two phases: a rapid (complete by 15 min) cycloheximide-insensitive increase of 50-100% and a slower (observable by 6 h) cycloheximide-sensitive increase in transport to about five times the basal level. The time course of the latter increase preceded that of the appearance of the 75 000 and 95 000 dalton polypeptides; by the time that increases in the levels of these polypeptides were observed, the hexose uptake rates had almost reached their maximum value. Upon cellular fractionation, the greatest enrichment of the 75 000 and 95 000 dalton polypeptides was observed in the endoplasmic reticulum fraction, which was devoid of vesicular stereospecific D-glucose uptake activity. The plasma membrane fraction was enriched in stereospecific D-glucose uptake activity. The plasma membrane fraction was enriched in stereospecific D-glucose uptake activity but not in the 75 000 and 95 000 dalton polypeptides. The glucose deprivation-induced increase in hexose uptake was not prevented by tunicamycin, although this inhibitor of protein glycosylation decreased the hexose uptake of glucose-fed cells by 80% after 24 h. However, under these latter conditions an increase in the levels of the 75 000 and 95 000 dalton polypeptides was observed. On the basis of this data, we conclude that the polypeptides of molecular weights 75 000 and 95 000 are not involved in glucose transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.