Abstract
This paper examines the fundamental mechanisms of synovial fluid lubrication in artificial joints. Film thickness measurements were made for bovine serum solutions in a model test device. In contact imaging was also carried out to aid interpretation of these results. The results indicated that two types of film are formed; a boundary layer of adsorbed protein molecules, which are augmented by a high-viscosity fluid film generated by hydrodynamic effects. The high-viscosity film is due to inlet aggregation of protein molecules forming a gel which is entrained into the contact preferentially at low speeds. As the speed increases this gel appears to shear thin, giving much lower lubricant film thickness. Results suggest that protein-containing fluids do not obey classical Newtonian EHL models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.