Abstract

At present, stationary phases based on ionic liquids are a promising and widely used technique in gas chromatography, yet they remain poorly studied. Unfortunately, testing of "new" stationary phases is often carried out on a limited set of test compounds (about 10 compounds) of relatively simple structures. This study represents the first investigation into the physicochemical patterns of retention of substituted (including polysubstituted) aromatic alcohols on two stationary phases of different polarities: one based on pyridinium-based ionic liquids and the other on a standard polar phase. The retention order of the studied compounds on such stationary phases compared to the standard polar phase, polyethylene glycol (SH-Stabilwax), was compared and studied. It was shown that pyridinium-based ionic liquids stationary phase has a different selectivity compared to the SH-Stabilwax. Using a quantitative structure-retention relationships (QSRR) study, the differences in selectivity of the two stationary phases were interpreted. Using CHERESHNYA software, the importance of descriptors on different stationary phases was evaluated for the same data set. Different selectivity of the stationary phases correlates with different contributions of descriptors for the analytes under study. For the first time, we show that in-column dehydration is observed for some compounds (mostly substituted benzyl alcohols). This effect is worthy of further investigation and requires attention when analyzing complex mixtures. It suggests that when testing "new" stationary phases, it is necessary to conduct tests on a large set of different classes of compounds. This is because, in the case of using ionic liquids as an stationary phase, a reaction between the analyte and the stationary phase is possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.