Abstract

In this study we developed a novel approach, using in-capillary formation of polymer/surfactant complexes (IPSC)–assisted reversed-migration MEKC (RM-MEKC), for the analysis of neutral steroids. This process involved two sequential events: in-capillary polymer/surfactant complexes formation during sample preconcentration, followed by IPSC separation. The procedure began with a polymer-filled capillary. Initially, on-line preconcentration of the sample was performed at the sample plug. Meanwhile, free surfactants migrated to interact with polymers, forming polymer–surfactant complexes. Analytes were then kinetically partitioned between the mixed phases (micelles and polymer–SDS complexes). Sodium dodecyl sulfate (SDS) and poly(N-isopropylacrylamide) (PNIPAAm) were employed as pseudo-stationary phases (PSPs). This system allowed the successful separation of five steroids (testosterone, hydrocortisone 21-acetate, dexamethasone, prednisolone, hydrocortisone) in acetate buffer and the determination of urinary free hydrocortisone; it also exhibited excellent performance for sample on-line concentration. The limit of detection for hydrocortisone was 20.98ng/mL (R2=0.9995). The polymer size, concentrations, end-group charges, and SDS concentrations were evaluated. This IPSC/RM-MEKC system, which can be adopted in commercial CE instruments, is easy to operate, suitable for combination with several sample preconcentration options, sensitive, robust, and environmentally sustainable. We suspect that such systems might have potential applications in clinical analyses and in microanalytical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call