Abstract

While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the ‘bag of worms’ phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production.

Highlights

  • We currently observe research and development of nanotechnologies on the fast lane

  • Similar uptake patterns were previously demonstrated using bacterial toxins [14] or mercury [15]. Consistent with this our results suggest that NPs are efficiently taken up by C. elegans during food intake and translocate to the lumen and tissues of different organs (Table 1)

  • We show here that silica-NPs induce a reduction of progeny production in the nematode worm C. elegans

Read more

Summary

Introduction

We currently observe research and development of nanotechnologies on the fast lane. The number of engineered nanoparticles (NPs) and their applications grow at an equal fast pace. The very feature of nano-sized particles to take on novel properties and functions in comparison to those seen in the bulk scale disclose a manifold of new technical applications. A growing field of nanobiotechnology covers applications such as drug delivery, drug screening, imaging, diagnosis and gene delivery that, taken together, may enable new strategies for treatment and elucidation of the molecular mechanisms of human disease [2,3,4]. For the development of sustained nanotechnologies it is important to investigate nano-bio-interactions to get a clearer picture about effects, including putatively adverse consequences, of NPs on human health [5,6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call