Abstract

BackgroundOptimal method for voltage assessment in AF remains unclear. ObjectivesThis study evaluated different methods for assessing atrial voltage and their accuracy in identifying pulmonary vein reconnection sites (PVRSs) in atrial fibrillation (AF). MethodsPatients with persistent AF undergoing ablation were included. De novo procedures: voltage assessment in AF with omnipolar voltage (OV) and bipolar voltage (BV) methodology and BV assessment in sinus rhythm (SR). Activation vector and fractionation maps were reviewed at voltage discrepancy sites on OV and BV maps in AF. AF voltage maps were compared with SR BV maps. Repeat ablation procedures: OV and BV maps in AF were compared to detect gaps in wide area circumferential ablation (WACA) lines that correlated with PVRS. ResultsForty patients were included: 20 de novo and 20 repeat procedures. De novo procedure: OV vs BV maps in AF; average voltage 0.55 ± 0.18 mV vs 0.38 ± 0.12 mV; P = 0.002, voltage difference of 0.20 ± 0.07 mV; P = 0.003 at coregistered points and proportion of left atrium (LA) area occupied by low-voltage zones (LVZs) was smaller on OV maps (42.4% ± 12.8% OV vs 66.7% ± 12.7% BV; P < 0.001). LVZs identified on BV maps and not on OV maps correlated frequently to wavefront collision and fractionation sites (94.7%). OV AF maps agreed better with BV SR maps (voltage difference at coregistered points 0.09 ± 0.03 mV; P = 0.24) unlike BV AF maps (0.17 ± 0.07 mV, P = 0.002). Repeat ablation procedure: OV was superior in identifying WACA line gaps that correlated with PVRS than BV maps (area under the curve = 0.89, P < 0.001). ConclusionsOV AF maps improve voltage assessment by overcoming the impact of wavefront collision and fractionation. OV AF maps correlate better with BV maps in SR and more accurately delineate gaps on WACA lines at PVRS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call