Abstract

In type 1 diabetes, autonomic dysfunction may occur early as a decrease in heart rate variability (HRV). In populations without diabetes, the positive effects of exercise training on HRV are well-documented. However, exercise in individuals with type 1 diabetes, particularly if strenuous and prolonged, can lead to sharp glycemic variations, which can negatively impact HRV. This study explores the impact of a 9-day cycling tour on HRV in this population, with a focus on exercise-induced glycemic excursions. Twenty amateur athletes with uncomplicated type 1 diabetes cycled 1,500 km. HRV and glycemic variability were measured by heart rate and continuous glucose monitoring. Linear mixed models were used to test the effects of exercise on HRV, with concomitant glycemic excursions and subject characteristics considered as covariates. Nighttime HRV tended to decrease with the daily distance traveled. The more time the subjects spent in hyperglycemia, the lower the parasympathetic tone was. This result is striking given that hyperglycemic excursions progressively increased throughout the 9 days of the tour, and to a greater degree on the days a longer distance was traveled, while time spent in hypoglycemia surprisingly decreased. This phenomenon occurred despite no changes in insulin administration and a decrease in carbohydrate intake from snacks. In sports enthusiasts with type 1 diabetes, multiday prolonged exercise at moderate-to-vigorous intensity worsened hyperglycemia, with hyperglycemia negatively associated with parasympathetic cardiac tone. Considering the putative deleterious consequences on cardiac risks, future work should focus on understanding and managing exercise-induced hyperglycemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.