Abstract

In aqueous alkali, Fremy’s salt (potassium nitrosodisulfonate dimer), homolyses nearly exclusively to the monomer radical anion, nitrosodisulfonate (NDS). In this media, NDS almost quantitatively oxidizes benzyl alcohol (PhCH 2OH) to benzaldehyde (PhCHO), itself being reduced to hydroxylamine disulfonate (HNDS). The reaction is very nearly first-order in [NDS], [alkanol] and in [OH −]. However, with progressive addition of HNDS, decay kinetics of NDS gradually deviates from first-order. Ultimately, with sufficient excess of HNDS, the reaction becomes second-order in [NDS]. The consumption ratio, (ΔPhCH 2OH]/Δ[NDS]), is ∼2. PhCD 2OH manifests a large primary kinetic isotope effect ( k H/ k D = 11.6). Substituted benzyl alcohols (RBzCH 2OH) with R-groups withdrawing electron density from the O–H bond accelerated the reaction; those with R-groups donating electron density to the O–H bond retarded the reaction. The conversion of 2-propanol to 2-propanone is much slower compared to that of benzyl alcohol to benzaldehyde. An alpha-H atom transfer mechanism seems logical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call