Abstract
There is a high demand for the implementation of metallic nanoparticle (NP) sintering technology for die attach in high-power electronics. The performance of this technology is superior to that of the technology involving the use of lead-free solders. Although Cu NP paste is potentially a low-cost material, it faces the challenge of oxidation during sintering. This may result in a significant deterioration of the mechanical, thermal, and electrical properties. Therefore, there are limited studies on the in-air sintering of Cu NP pastes. The present study demonstrated the in-air pressure-assisted low-temperature sintering of a commercial Cu NP paste. Furthermore, the sintering was performed without using a protective atmosphere, unlike that in most of the previously reported investigations. The sintering behavior was investigated at three levels of temperatures (200–240 °C) and five levels of pressures (5–25 MPa). The joints that were sintered at high temperatures and pressures exhibited condensed microstructures and high bonding strengths. High sintering temperatures accelerated the diffusion between Cu NPs, while high sintering pressure facilitated the removal of evaporated organic compounds and the air between NPs. This not only facilitated sintering but also prevented the oxidation of Cu. The optimal sintering conditions promoted the formation of 3D connections between the Cu NPs, thereby increasing the shear strength of the sample. The samples that were sintered at 240 °C and 10 MPa experiences the highest increase in the shear strength, furthermore, the microstructures were optimized under this condition. The shear strength of 28.1 ± 8.47 MPa was achieved under this condition, which satisfied the requirements for die attach in high power electronics applications, moreover, the sintering process was moderate and cost-effective. Therefore, the optimal sintering temperature and pressure for the in-air sintering of the Cu NP paste was concluded to be 240 °C and 10 MPa, respectively. The results indicated that in-air sintering with pressure assistance can be applied for die attach in the high-power electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.