Abstract

Inhalation of asbestos increases the risk of lung cancer and pulmonary fibrosis. It is difficult to directly assess the distribution and content of inhaled particles in lung tissue sections. The purpose of this study is to employ an in-air micro particle induced X-ray emission (in-air micro-PIXE) system for assessment of the spatial distribution and content of asbestos and other metals in lung tissue. A proton ion-microbeam from this system was applied to irradiate lung tissue of patients with or without asbestosis, tumor tissue from both groups, and asbestos fibers (in vitro). The content of each element composing asbestos and those of other metals were calculated and their distribution was assessed from the characteristic X-ray pattern for each element obtained after irradiation. This in-air micro-PIXE system could identify the location of asbestos bodies composed of Si, Mg, and Fe in lung tissue sections. Macrophage and lymphocytes accumulated in that area. This new system also revealed deposits of titanium, nickel, and cobalt in the lung tissues, in addition to asbestos bodies. The Si and Fe content were higher in lungs with asbestosis than in lungs without asbestosis or in tumor tissue. Analysis of asbestos fibers composed of chrysotile, crocidolite, and amosite showed that the ratios of Si, Fe, and Mg corresponded with those for the chemical structures. In-air micro-PIXE analysis is useful for assessing the distribution and quantities of asbestos bodies and also other metals in lung tissue comparing to immune-related cell localizations, and is also useful for analysis of standard asbestos fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call