Abstract

We present an approach to use individual In2O3 nanowire transistors as chemical sensors working at room temperature. Upon exposure to a small amount of NO2 or NH3, the nanowire transistors showed a decrease in conductance up to six or five orders of magnitude and also substantial shifts in the threshold gate voltage. These devices exhibited significantly improved chemical sensing performance compared to existing solid-state sensors in many aspects, such as the sensitivity, the selectivity, the response time, and the lowest detectable concentrations. Furthermore, the recovery time of our devices can be shortened to just 30 s by illuminating the devices with UV light in vacuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.