Abstract

Arthritis remains a disabling and painful disease, and involvement of finger joints is a major cause of disability and loss of employment. Traditional arthritis measurements require labour intensive examination by clinical staff. These manual measurements are inaccurate and open to observer variation. This paper presents the development and testing of a next generation wireless smart glove to facilitate the accurate measurement of finger movement through the integration of multiple IMU sensors, with bespoke controlling algorithms. Our main objective was to measure finger and thumb joint movement. These dynamic measurements will provide clinicians with a new and accurate way to measure loss of movement in patients with rheumatoid arthritis. Commercially available gaming gloves are not fitted with sufficient sensors for this particular application, and require calibration for each glove wearer. Unlike these state-of-the-art data gloves, the inertial measurement unit glove uses a combination of novel stretchable substrate material and nine degree of freedom inertial sensors in conjunction with complex data analytics to detect joint movement. Our novel iSEG-Glove requires minimal calibration and is therefore particularly suited to the healthcare environment. Inaccuracies may arise for wearers who have varying degrees of movement in their finger joints, variance in hand size or deformities. The developed glove is fitted with sensors to overcome these issues. This glove will help quantify joint stiffness and monitor patient progression during the arthritis rehabilitation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.