Abstract

Dynamic topic models (DTM) are commonly used for mining latent topics in evolving web corpora. In this paper, we note that a major limitation of the conventional DTM based models is that they assume a predetermined and fixed scale of topics. In reality, however, topics may have varying spans and topics of multiple scales can co-exist in a single web or social media data stream. Therefore, DTMs that assume a fixed epoch length may not be able to effectively capture latent topics and thus negatively affect accuracy. In this paper, we propose a Multi-Scale Dynamic Topic Model (MS-DTM) and a complementary Incremental Multi-Scale Dynamic Topic Model (IMS-DTM) inference method that can be used to capture latent topics and their dynamics simultaneously, at different scales. In this model, topic specific feature distributions are generated based on a multi-scale feature distribution of the previous epochs; moreover, multiple scales of the current epoch are analyzed together through a novel multi-scale incremental Gibbs sampling technique. We show that the proposed model significantly improves efficiency and effectiveness compared to the single scale dynamic DTMs and prior models that consider only multiple scales of the past.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.