Abstract
The purpose of this study is to evaluate the overall accuracy of intensity‐modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter‐free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG‐119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X‐FFF, 10X‐FFF) and the Exact IGRT couch was included in the dose calculation. One high‐dose point in the PTV and one low‐dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high‐ and low‐dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high‐dose point in the PTV were 0.030 ± 0.007 (range, 0.022–0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016–0.043) for the RapidArc plans. For low‐point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024–0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017–0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high‐dose region were 5.9 ± 2.7 (range, 1.4–8.6) and 3.9 ± 2.9 (range, 1.5–8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low‐dose region were 5.3 ± 2.6 (range, 1.2–7.4) and 3.7 ± 2.8 (range, 1.8–8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities.PACS number: 87
Highlights
TrueBeam linear accelerators (Varian Medical Systems, Palo Alto, CA) have been developed to include both flattening filter (FF) (6X, 10X, and 15X) and flattening filter-free (FFF) (6X-FFF, 10X-FFF) photon modes for intensity-modulated radiation therapy (IMRT) and RapidArc treatment delivery
Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG-119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X-FFF, 10X-FFF) and the Exact IGRT couch was included in the dose calculation
The detailed commissioning procedures have been published.[2]. The purpose of this study is to evaluate the overall accuracy of the beam commissioning, and establish confidence limits (CLs) for both IMRT and RapidArc of all five photon energies in the TrueBeam system, based on the TG-119 guidelines
Summary
TrueBeam linear accelerators (Varian Medical Systems, Palo Alto, CA) have been developed to include both FF (6X, 10X, and 15X) and FFF (6X-FFF, 10X-FFF) photon modes for intensity-modulated radiation therapy (IMRT) and RapidArc (the implementation of VMAT technique on TrueBeam system) treatment delivery. Commissioning and QA of VMAT have been studied extensively.[13,14,15,16,17] Kielar et al[18] evaluated the planning and delivery accuracy of IMRT and RapidArc treatments systematically by optimizing the dosimetric leaf gap (DLG) parameters
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.