Abstract
Incomplete data sets with different data types are difficult to handle, but regularly to be found in practical clustering tasks. Therefore in this paper, two procedures for clustering mixed-type data with missing values are derived and analyzed in a simulation study with respect to the factors of partition, prototypes, imputed values, and cluster assignment. Both approaches are based on the k-prototypes algorithm (an extension of k-means), which is one of the most common clustering methods for mixed-type data (i.e., numerical and categorical variables). For k-means clustering of incomplete data, the k-POD algorithm recently has been proposed, which imputes the missings with values of the associated cluster center. We derive an adaptation of the latter and additionally present a cluster aggregation strategy after multiple imputation. It turns out that even a simplified and time-saving variant of the presented method can compete with multiple imputation and subsequent pooling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.