Abstract

Trace non-recycling impurities have been injected into Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] plasmas in order to determine impurity transport coefficients. Subsequent impurity emission has been observed with spatially scanning x-ray and Vacuum Ultra-Violet (VUV) spectrometer systems. Measured time-resolved brightness profiles of helium- and lithium-like transitions have been compared with those calculated from a transport code which includes impurity diffusion and convection in conjunction with an atomic physics package for individual line emission. During Low-Confinement-Mode (L-mode) plasmas, the transport can be characterized by pure diffusion, with coefficients ∼5000 cm2/s, reflecting the ∼20 ms decay in the x-ray and VUV line brightnesses. During High-Confinement-Modes (H-modes), the impurity confinement times are much longer, and the modelling requires that there be a strong inward convection (of order 1000 cm/s) near the plasma edge, with greatly reduced diffusion (of order 100 cm2/s), also in the region of the edge transport barrier. These edge values of the transport coefficients during H-mode are qualitatively similar to the neo-classical values. Nitrogen has also been injected, and after the H- to L-mode transition, the inner shell satellite lines of lithium-like nitrogen dominate in intensity the resonance line of helium-like N5+ in a thin shell near the plasma edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.