Abstract

A potential threat to the performance of magnetically confined fusion plasmas is the problem of impurity accumulation, which causes the concentration of highly charged impurity ions to rise uncontrollably in the center of the plasma and spoil the energy confinement by excessive radiation. It has long been thought that the collisional transport of impurities in stellarators always leads to such an accumulation (if the electric field points inwards, which is usually the case), whereas tokamaks, being axisymmetric, can benefit from "temperature screening," i.e., an outward flux of impurities driven by the temperature gradient. Here it is shown, using analytical techniques supported by results from a new numerical code, that such screening can arise in stellarator plasmas, too, and indeed does so in one of the most relevant operating regimes, where the impurities are highly collisional while the bulk plasma is at low collisionality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call