Abstract

We develop a theory for the non-equilibrium screening of a charged impurity in a two-dimensional electron system under a strong time-periodic drive. Our analysis of the time-averaged polarization function and dielectric function reveals that Floquet driving modifies the screened impurity potential in two main regimes. In the weak drive regime, the time-averaged screened potential exhibits unconventional Friedel oscillations with multiple spatial periods contributed by a principal period modulated by higher-order periods, which are due to the emergence of additional Kohn anomalies in the polarization function. In the strong drive regime, the time-averaged impurity potential becomes almost unscreened and does not exhibit Friedel oscillations. This tunable Friedel oscillations is a result of the dynamic gating effect of the time-dependent driving field on the two-dimensional electron system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.