Abstract
We investigate Friedel Oscillations (FO) surrounding a point scatterer in graphene. We find that the long-distance decay of FO depends on the symmetry of the scatterer. In particular, the FO of the charge density around a Coulomb impurity show a faster, δρ∼1/ r3, decay than in conventional 2D electron systems. In contrast, the FO of the exchange field which surrounds atomically sharp defects breaking the hexagonal symmetry of the honeycomb lattice decay according to the 1/r2 law. We discuss the consequences of these findings for the temperature dependence of the resistivity of the material and the RKKY interaction between magnetic impurities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.