Abstract

We study theoretically the features of impurity-induced states on the surface of a three-dimensional Weyl semimetal in this work. For calculating the impurity-induced local density of states based on T-matrix formulation, we found that for different Weyl semimetal phases the behaviors of a local impurity exhibit distinguishable prominent features for the surface Fermi arc states. Due to two opposite-directional and -chirality surface currents for a surface, a bound state appears at the unitary limit of scattering intensity near the impurity site. Then the resonance condition for different Weyl semimetal phases and scattering intensity is investigated. Our results can be used to identify distinctive topological phases of Weyl semimetal. Furthermore, the relevance of topological nodal-point and -line systems is discussed. Some relation between our theoretical results and current experimental scheme are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call