Abstract

The intentional incorporation of transition metal impurities into colloidal semiconductor nanocrystals allows an extension of the host material's functionality. While dopant incorporation has been extensively investigated in zero-dimensional quantum dots, the substitutional replacement of atoms in two-dimensional (2D) nanostructures by magnetic dopants has been reported only recently. Here, we demonstrate the successful incorporation of Co2+ ions into the shell of CdSe/CdS core/shell nanoplatelets, using these ions (i) as microscopic probes for gaining distinct structural insights and (ii) to enhance the magneto-optical functionality of the host material. Analyzing interatomic Co2+ ligand field transitions, we conclude that Co2+ is incorporated into lattice sites of the CdS shell, and effects such as diffusion of dopants into the CdSe core or diffusion of the dopants out of the heterostructure causing self-purification play a minor role. Taking advantage of the absorption-based technique of magnetic circular dichroism, we directly prove the presence of sp-d exchange interactions between the dopants and the band charge carriers in CdSe/Co2+:CdS heteronanoplatelets. Thus, our study not only demonstrates magneto-optical functionality in 2D nanocrystals by Co2+ doping but also shows that a careful choice of the dopant type paves the way for a more detailed understanding of the impurity incorporation process into these novel 2D colloidal materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.