Abstract

Experiments are underway on the Alcator C tokamak with over 1 MW of RF power injected into the plasma at a frequency of 4.6 GHz to study both heating and current drive effects. During these studies, impurity generation from limiter structures has been observed. The RF induced impurity influx is a strongly nonlinear function of net injected power. For P RF < 500 kW, only small effects are seen. As P RF approaches 1 MW, however, sharp increases in impurity influxes and Z eff are observed. Three different limiter materials have been used during these studies: molybdenum, graphite, and silicon-carbide coated graphite. In each case, the materials of the limiter structure are seen to dominate the increased impurity influx. In a typical case, with P RF = 1.0 MW, n e = 1.3 × 10 14 cm −3 , and the SiC coated limiters, Z eff is seen to increase from 1.5 before the RF pulse to about 4 during the heating. At the same time, central T e increases from 2000 to 3000 eV and central T i from 1200 to 1800 eV. Similar effects are seen in both H 2 and D 2 working gas discharges. The contribution to impurity generation of nonthermal electrons, which are produced by the RF, is under investigation. Changes in edge plasma temperature and density, as well as the possibility that the particle transport is affected by the RF, are also being examined. Results of the experiments with the three different limiter materials are compared, and contributions of impurity radiation to the overall power balance are estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.