Abstract

We theoretically study the impurity effects on the zeroth pseudo-Landau level (PLL) representation of the flat band in a twisted bilayer graphene (TBG) system. Our research investigates the impact of both short-range and long-range charged impurities on the PLL using the self-consistent Born approximation and random phase approximation. Our findings indicate that short-range impurities have a significant effect on the broadening of the flat band due to impurity scattering. In contrast, the impact of long-range charged impurities on the broadening of the flat band is relatively weak, and the primary impact of the Coulomb interaction is the splitting of the PLL degeneracy when a certain purity condition is satisfied. As a result, spontaneous ferromagnetic flat bands with nonzero Chern numbers emerge. Our work sheds light on the effect of impurities on the quantum Hall plateau transition in TBG systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call