Abstract

Impurity effects on the nucleation and growth of primary Al3(Sc,Zr) phase have been investigated in high purity Al alloys and commercial purity Al alloys, respectively. In the case of high purity Al alloys, primary Al3(Sc,Zr) phases were found to be pushed to grain boundaries ahead of the solidification front. Such type of primary Al3(Sc,Zr) phase did not contribute to the heterogeneous nucleation, and thereby the grain refinement of Al alloys. In the case of commercial purity Al alloys, the presence of Fe, Si, Cu, Mg, Ti, and other impurities significantly enhanced the heterogeneous nucleation of primary Al3(Sc,Zr) phase. Most primary Al3(Sc,Zr) phases were found to be located within the α-Al matrix, and kept an identical orientation relationship with the α-Al matrix. Furthermore, the presence of the impurities also changed the growth mode on the primary Al3(Sc,Zr) phase. In the case of commercial purity Al alloys, a peritectic to eutectic reaction was induced due to the presence of the impurities. A layered growth was observed leading to a narrow particle size distribution. In contrast, in the case of high purity Al alloys, a featureless structure was observed. This investigation demonstrates that impurities and their concentrations are important factors affecting the nucleation and growth of primary Al3(Sc,Zr) phases, and thereby for the successful grain refinement in Al-based alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.