Abstract

We perform a full configuration-interaction study on a square quantum dot containing several electrons in the presence of an attractive impurity. The magnetic ordering in the dot is analyzed using appropriate pair-correlation functions. We find that a change in the size of the quantum dot can change the nature of the impurity from nonmagnetic to magnetic. In the low-density regime, the impurity traps one electron and the magnetic moment on the localized peaks outside the impurity fluctuates from negative to positive going through zero as a function of number of electrons. We also observe that the impurity changes the charge densities of excited states of two-electron quantum dot significantly, which in the absence of the impurity are almost similar. Our study also shows that in the strongly correlated regime the configuration-interaction approach yields $\ensuremath{\sim}20%$ more localization than density-functional theory. It has also been observed that only a small fraction of the total number of Slater determinants are required to produce $\ensuremath{\sim}99%$ of the converged charge density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.