Abstract
We study theoretically the single impurity effect on graphene-based superconductors. Four different pairing symmetries are discussed. Sharp in-gap resonant peaks are found near the impurity site for the d + id pairing symmetry and the p + ip pairing symmetry when the chemical potential is large. As the chemical potential decreases, the in-gap states are robust for the d + id pairing symmetry while they disappear for the p + ip pairing symmetry. Such in-gap peaks are absent for the fully gapped extended s-wave pairing symmetry and the nodal f-wave pairing symmetry. The existence of the ingap resonant peaks can be explained well based on the sign-reversal of the superconducting gap along different Fermi pockets and by analyzing the denominator of the T-matrix. All of the features may be checked by the experiments, providing a useful probe for the pairing symmetry of graphene-based superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.