Abstract

Band structures of topological insulators are characterized by non-local topological invariants. Consequently, proposals for the experimental detection using local probes are rare. A recent paper [Slager et al., Phys. Rev. B 92, 085126 (2015)] has argued, based on theoretical results for a particular class of models, that insulators with topologically trivial and non-trivial band structures in two space dimensions display a qualitatively different response to point-like impurities. Here we present a comprehensive investigation of the impurity response of a large set of models of non-interacting electrons on the honeycomb lattice, driven insulating by either broken inversion, broken time reversal, broken $C_3$, or broken translation symmetry. These cases include Hofstadter bands, strain-induced pseudo-Landau levels and higher-order topological insulators. Our results confirm that for hopping models respecting the lattice symmetries, the response to a single impurity can indeed distinguish between trivial and non-trivial band topology. However, for modulated or inhomogeneous host systems we find that trivial states of matter can display an impurity response akin to that of topologically non-trivial states, and thus the diagnostic fails.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.