Abstract

By combining temperature-dependent resistivity and Hall effect measurements, we investigate donor state energy in Si-doped β-Ga2O3 films grown using metal-organic vapor phase epitaxy. High-magnetic field (H) Hall effect measurements (–90 kOe ≤ H ≤ +90 kOe) showed non-linear Hall resistance for T < 150 K, revealing two-band conduction. Further analyses revealed carrier freeze out characteristics in both bands yielding donor state energies of ∼33.7 and ∼45.6 meV. The former is consistent with the donor energy of Si in β-Ga2O3, whereas the latter suggests a residual donor state. This study provides critical insight into the impurity band conduction and the defect energy states in β-Ga2O3 using high-field magnetotransport measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.