Abstract
We study spinless fermions with repulsive nearest-neighbor interactions perturbed by an impurity particle or a local potential quench. Using the numerical time-evolving block decimation method and a simplified analytic model, we show that the pertubations create a soliton-antisoliton pair. If solitons are already present in the bath, the two excitations have a drastically different dynamics: The antisoliton does not annihilate with the solitons and is therefore confined close to its origin while the soliton excitation propagates. We discuss the consequences for experiments with ultracold gases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.