Abstract

ABSTRACTWe have studied the atomic states of arsenic (As) and phosphorus (P) in SiO2 using X-ray photoelectron spectroscopy (XPS). Silicon dioxide implanted with As or P shows multiple XPS core level peaks corresponding to the impurity atoms located in two distinct atomic sites. The binding energies of the two arsenic 3d core levels occur at 45.8 and 42.3 eV and the two phosphorus 2p core levels occur at 134.7 and 130.3 eV. When the implanted oxides are annealed in an oxygen ambient between 900°C and 950°C, only the highbinding- energy peaks of P and As are observed. This identifies the highbinding- energy core level peaks as being associated with the impurity (P or As) on silicon sites. Annealing in nitrogen at 950° C results in an increase in the low-binding-energy signal. The low-binding-energy peaks are associated with the impurity (P or As) bonded to silicon neighbors. The relative amounts of dopants in silicon and oxygen sites depend on ambient purity and processing details. Reference to previous work shows that the presence of As or P on silicon sites in SiO2 corresponds to a fast diffusing state whereas As or P on oxygen sites corresponds to a slow diffusing state [1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.