Abstract

AbstractTotal impurity content of salt plus carbon dioxide was estimated as a function of grain size and depth in polycrystalline ice samples cored from a temperate glacier by measuring the electrical conductivity of the melt with air excluded. Conductivity decreased with increasing depth and grain size and ranged from × 10-5 to 0.4 × 10-5 Ω -1 m-1 at 0°C. The conductivity of pure water at 0°C is 0.1 × 10-5 Ω -1 m-1 Studies of the configuration of the three phases and of in situ temperature were also made. Thermodynamic constraints indicate that these impurities are probably concentrated as follows: about 5 mol m-3 in the liquid in the veins along three-grain intersections, roughly 1 × 10-6 mol m-2 associated with grain-boundary area exclusive of veins, and about 0.7 × 10-3 mol m-3 in volume exclusive of veins and grain boundaries. The last of these categories seems to account for most of the impurities in coarse ice (grain size about 20 mm), but all three categories seem significant in fine ice (grain size about 2 mm). Differences in bulk impurity content possibly indicate different histories of flushing by water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.