Abstract

In this study we have determined the concentration of some impurities such as carbon, iron, copper, titanium, nickel of the flat product (polycrystalline silicon). These impurities generate a yield decrease in the photovoltaic components. The material (polycrystalline silicon) used in this work is manufactured by the Unit of Silicon Technology Development (UDTS Algiers, Algeria). The 80 kg ingot has been cutted into 16 briquettes in order to have plates (flat product) of 100 mm×100 mm dimensions. Each briquette is divided into three parts top (T), middle (M) and bottom (B). For this purpose, the following instrumental analysis techniques have been employed: neutronic analysis (neutronic activation analysis) and secondary ion mass spectrometry (SIMS). Masses of 80 mg are sampled and form of discs 18 mm in diameter, then exposed to a flux of neutron of 2.1012 neutron cm−2 s−1 during 15 min. The energetic profile of incidental flux is constituted of fast neutrons (ΦR = 3.1012 n.cm−2 s−1; E = 2 Mev), thermal neutrons (ΦTH = 1013 n.cm−2 s−1; E = 0.025 ev) and epithermal neutrons (Φepi = 7.1011 n cm−2 s−1; E>4.9 ev), irradiation time 15 mn, after 20 mn of decrement, acquisitions of 300 s are carried out. The results are expressed by disintegration per second which does not exceed the 9000 Bq, 500 Bq and 2600 Bq, respectively for copper, titanium and nickel. It is observed that the impurities concentrations in the medium are higher. The impurities in the bottom of the ingots originate from the crucible. The impurities in the top originate from impurities dissolved in the liquid silicon, which have segregated to the top layer of the ingot and after solidification diffuse. Silicon corresponds to a mixture of three isotopes 28Si, 29Si and 30Si. These elements clearly appear on the mass spectrum (SIMS). The presence of iron and the one of nickel has been noticed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call