Abstract

In this paper, a novel impulsive control law is proposed for synchronization of stochastic discrete complex networks with time delays and switching topologies, where average dwell time and average impulsive interval are taken into account. The side effect of time delays is estimated by Lyapunov–Razumikhin technique, which quantitatively gives the upper bound to increase the rate of Lyapunov function. By considering the compensation of decreasing interval, a better impulsive control law is recast in terms of average dwell time and average impulsive interval. Detailed results from a numerical illustrative example are presented and discussed. Finally, some relevant conclusions are drawn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call