Abstract

This paper presents the results of a study covering measurement and characterization of the wide-band impulsive noise present in a digital TV radio channel. Measurements were conducted at a frequency of 762 MHz in different outdoor and indoor environments using vertical and horizontal polarization. The measurement system was built on commercial equipment only. The calibration process, which is an important stage of this kind of measurements, is described. To analyze the measurements the impulsive noise has been modeled as a pulse train where the pulse amplitude, pulse duration and elapsed time between pulses are considered random variables. It has been found that the pulse duration and elapsed time between pulses is not dependent on the antenna polarization while the pulse amplitude is, especially in the case of the noise generated by a fluorescent lamp. It has also been found that the pulse duration of the noise measured in the outdoor environments presents some clustering features and is correlated with the pulse amplitudes. This correlation may be caused by a RF noise bandwidth that is larger than the bandwidth of the measurement system. The noise in busy streets presents larger pulse durations, larger amplitude, and shorter elapsed time between pulses that the noise measured in a pedestrian area. Several statistical tests have been done to find the distribution function that best fits these random variables. Power Rayleigh, lognormal, exponential, Poisson, and Gamma distributions have been tested. According to the assessment carried out, none of the distribution functions is adequate to model the pulse amplitudes or the elapsed time between pulses, while the pulse duration seems to be Gamma distributed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.