Abstract

In this paper, we study a class of impulsive neutral stochastic functional integro-differential equations with infinite delay driven by a standard cylindrical Wiener process and an independent cylindrical fractional Brownian motion (fBm) with Hurst parameter H∈(1/2,1) in the Hilbert space. We prove the existence and uniqueness of the mild solution for this kind of equations with the coefficients satisfying some non-Lipschitz conditions, which include the classical Lipschitz conditions as special case. An example is provided to illustrate the theory. Some well-known results are generalized and extended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.