Abstract

This paper investigates the mean-square bounded consensus issue in a two-layer multi-agent network under deception attacks. The two-layer network is composed of the leader and follower layers with a switching topology. Employing an impulsive control method, the mean-square bounded consensus for the leader layer and the node-to-node mean-square bounded consensus of the two-layer network are analyzed. Based on the knowledge of graph theory, Lyapunov stability theory, and linear matrix inequalities, sufficient conditions for the mean-square bounded consensus of multi-agent systems in the two-layer network are derived. Finally, the practicability and efficacy of the theoretical outcomes are corroborated via the provided numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call