Abstract

In this paper, the impulsive average-consensus problem of first-order multi-agent systems with dynamically changing topologies is investigated. Continuous-time dynamics and impulsive protocols are both subjected to effects from nonuniform time-varying communication delays. By utilizing Razumikhin techniques and time-varying Lyapunov function method, some impulse-delay-dependent sufficient criteria for the average-consensus of multi-agent systems are derived. In addition, the discrete-time connection digraph is designed in terms of linear matrix inequalities for given impulsive sequences and some programming skills are used to make the discrete-time topology meet the needs of the actual environment. Numerical simulations are given to illustrate the effectiveness and validity of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call