Abstract
Abstract Abstract This paper addresses the reliability of neuro-classifiers for bank note recognition. A local principal component analysis (PCA) method is applied to remove non-linear dependencies among variables and extract the main principal features of data. At first the data space is partitioned into regions by using a self-organizing map (SOM) model and then the PCA is performed in each region. A learning vector quantization (LVQ) network is employed as the main classifier of the system. By defining a new algorithm for rating the reliability and using a set of test data, we estimate the reliability of the system. The experimental results taken from 1,200 samples of US dollar bills show that the reliability is increased up to 100% when the number of regions as well as the number of codebook vectors in the LVQ classifier are taken properly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.