Abstract
Neural networks and recurrent neural networks have been employed to learn, generalize, and generate musical examples and pieces. Yet, these models typically suffer from an inability to characterize and reproduce the long-term dependencies of musical structure, resulting in products that seem to wander aimlessly. We describe and examine three novel hierarchical models that explicitly operate on multiple structural levels. A three layer model is presented, then a weighting policy is added with two different methods of control attempting to maximize global network learning. While the results do not have sufficient structure beyond the phrase or section level, they do evince autonomous generation of recognizable medium-level structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.