Abstract
In this work, graphene oxide quantum dots (GOQDs) are introduced as an electron-trapped layer in Pd/Zr[Formula: see text]Hf[Formula: see text]O2 (ZHO)/SiO2/Si memory device. This structure possessed longer than 104 s retention capability, a low operation voltage around [Formula: see text][Formula: see text]V and 2.61[Formula: see text]V storage windows. GOQDs contained carbon–carbon and carbon–oxygen single/double bonds based on the analysis of C-1[Formula: see text] and O-1[Formula: see text] X-ray photoelectron spectra. It is proposed that the GOQDs’ wide bandgap with many oxygen-containing functional groups favors charge capture to a greater extent. This new type of charge-trapping memory can be a promising candidate for wide application to storing information with non-volatility in the big data era.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.