Abstract

Yield prediction is of great significance in agricultural production. Remote sensing technology based on unmanned aerial vehicles (UAVs) offers the capacity of non-intrusive crop yield prediction with low cost and high throughput. In this study, a winter wheat field experiment with three levels of irrigation (T1 = 240 mm, T2 = 190 mm, T3 = 145 mm) was conducted in Henan province. Multispectral vegetation indices (VIs) and canopy water stress indices (CWSI) were obtained using an UAV equipped with multispectral and thermal infrared cameras. A framework combining a long short-term memory neural network and random forest (LSTM-RF) was proposed for predicting wheat yield using VIs and CWSI from multi-growth stages as predictors. Validation results showed that the R2 of 0.61 and the RMSE value of 878.98 kg/ha was achieved in predicting grain yield using LSTM. LSTM-RF model obtained better prediction results compared to the LSTM with n R2 of 0.78 and RMSE of 684.1 kg/ha, which is equivalent to a 22% reduction in RMSE. The results showed that LSTM-RF considered both the time-series characteristics of the winter wheat growth process and the non-linear characteristics between remote sensing data and crop yield data, providing an alternative for accurate yield prediction in modern agricultural management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.