Abstract

The application of high-strength fine-grained structural steels with yield strengths greater than or equal to 690 MPa expands because of present light weight design trends. The requirements regarding the welded components safety increased due to high loading capacity. This determines a sustainable and economic application as well. However, high welding residual stresses could diminish the components safety, especially due to high restraint conditions in component or repair welds. Therefore, this work is concerned with global and local welding stresses, especially crack-critical welding stresses in the HAZ and while root welding due to the restraint conditions. Restraint intensities of real components were analysed and realised with two different weld tests, alongside two different plate dimensions and steel grades. A comparison of the test results showed several significant effects for heat control and restraint intensity regarding restraint forces and local welding stresses. Among these effects, substantial influences were found for the filler metal selection with partially altered results for root and filler beads. Local stresses of weld seam and HAZ were affected differently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.