Abstract

Least-squares (LS)-based integration computes the function values by solving a set of integration equations (IEs) in LS sense, and is widely used in wavefront reconstruction and other fields where the measured data forms a slope. It is considered that the applications of IEs with smaller truncation errors (TEs) will improve the reconstruction accuracy. This paper proposes a general method based on the Taylor theorem to derive all kinds of IEs, and finds that an IE with a smaller TE has a higher-order TE. Three specific IEs with higher-order TEs in the Southwell geometry are deduced using this method, and three LS-based integration algorithms corresponding to these three IEs are formulated. A series of simulations demonstrate the validity of applying IEs with higher-order TEs in improving reconstruction accuracy. In addition, the IEs with higher-order TEs in the Hudgin and Fried geometries are also deduced using the proposed method, and the performances of these IEs in wavefront reconstruction are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call