Abstract

Running safety of the railway vehicles on the bridge during earthquakes is a major concern for railway engineering. To reduce the derailment risk of railway vehicles on bridges, friction pendulum bearings (FPB) are proposed to be equipped on simply supported bridges in this study. The full nonlinear behavior of the FPB is introduced into the vehicle-bridge interaction model. The effect of FPB’s manufacturing variations, including the shear pin’s strength and friction coefficient, on the misalignment was investigated. The manufacturing variations of the FPB were found to produce large lateral misalignment, which further contributes to large wheel-rail forces when the vehicle passes over the girder ends. It diminishes the improvement in the vehicle’s seismic safety provided by FPBs. Thus, a misalignment control device is proposed to limit the misalignment of the railway bridges equipped with FPBs. The vehicle-bridge interaction analysis results show that no wheel uplift occurred on the bridge equipped with FPBs and misalignment control devices during an earthquake. It indicates that the FPB significantly reduces the vehicle’s derailment risk on bridges compared with the non-isolated bearings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.