Abstract

High-accuracy heading angle is significant for estimating autonomous vehicle attitude. By integrating GNSS (Global Navigation Satellite System) dual antennas, INS (Inertial Navigation System), and a barometer, a GNSS/INS/Barometer fusion method is proposed to improve vehicle heading angle accuracy. An adaptive Kalman filter (AKF) is designed to fuse the INS error and the GNSS measurement. A random sample consensus (RANSAC) method is proposed to improve the initial heading angle accuracy applied to the INS update. The GNSS heading angle obtained by a dual-antenna orientation algorithm is additionally augmented to the measurement variable. Furthermore, the kinematic constraint of zero velocity in the lateral and vertical directions of vehicle movement is used to enhance the accuracy of the measurement model. The heading errors in the open and occluded environment are 0.5418° (RMS) and 0.636° (RMS), which represent reductions of 37.62% and 47.37% compared to the extended Kalman filter (EKF) method, respectively. The experimental results demonstrate that the proposed method effectively improves the vehicle heading angle accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.