Abstract

Vector vortex waveplates (VVWs) open the door to new techniques in stellar coronagraphy and optical communications, but the performance of currently available liquid-crystal-polymer-based VVWs tends to be limited by defects in the axial region of the vortex pattern. As described here, several steps allow for a reduction in the size of such axial defects, including the use of photoalignment materials with high photosensitivity and reversible response, and a reduction in exposure energy. Moreover, redistributing the writing beam's intensity from the axial region to its periphery (using a VVW) allows the production of large area VVWs with a small defect area. Finally, using VVWs as linear to axial polarization converters allows producing VVWs of higher topological charge, while also reducing the photoalignment time to a few minutes. These steps have allowed the fabrication of VVWs with topological charges of 1 and 2 with central defect sizes below 3 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.