Abstract

Collecting labeled data for many important tasks in chemoinformatics is time consuming and requires expensive experiments. In recent years, machine learning has been used to learn rich representations of molecules using large scale unlabeled molecular datasets and transfer the knowledge to solve the more challenging tasks with limited datasets. Variational autoencoders are one of the tools that have been proposed to perform the transfer for both chemical property prediction and molecular generation tasks. In this work we propose a simple method to improve chemical property prediction performance of machine learning models by incorporating additional information on correlated molecular descriptors in the representations learned by variational autoencoders. We verify the method on three property prediction tasks. We explore the impact of the number of incorporated descriptors, correlation between the descriptors and the target properties, sizes of the datasets etc. Finally, we show the relation between the performance of property prediction models and the distance between property prediction dataset and the larger unlabeled dataset in the representation space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.