Abstract
Dataflow architectures can achieve much better performance and higher efficiency than general-purpose core, approaching the performance of a specialized design while retaining programmability. However, advanced application scenarios place higher demands on the hardware in terms of cross-domain and multi-batch processing. In this article, we propose a unified scale-vector architecture that can work in multiple modes and adapt to diverse algorithms and requirements efficiently. First, a novel reconfigurable interconnection structure is proposed, which can organize execution units into different cluster typologies as a way to accommodate different data-level parallelism. Second, we decouple threads within each DFG node into consecutive pipeline stages and provide architectural support. By time-multiplexing during these stages, dataflow hardware can achieve much higher utilization and performance. In addition, the task-based program model can also exploit multi-level parallelism and deploy applications efficiently. Evaluated in a wide range of benchmarks, including digital signal processing algorithms, CNNs, and scientific computing algorithms, our design attains up to 11.95× energy efficiency (performance-per-watt) improvement over GPU (V100), and 2.01× energy efficiency improvement over state-of-the-art dataflow architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Architecture and Code Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.